Semi-Proximal Mirror-Prox for Nonsmooth Composite Minimization
نویسندگان
چکیده
We propose a new first-order optimisation algorithm to solve high-dimensional non-smooth composite minimisation problems. Typical examples of such problems have an objective that decomposes into a non-smooth empirical risk part and a non-smooth regularisation penalty. The proposed algorithm, called Semi-Proximal Mirror-Prox, leverages the Fenchel-type representation of one part of the objective while handling the other part of the objective via linear minimization over the domain. The algorithm stands in contrast with more classical proximal gradient algorithms with smoothing, which require the computation of proximal operators at each iteration and can therefore be impractical for high-dimensional problems. We establish the theoretical convergence rate of Semi-Proximal Mirror-Prox, which exhibits the optimal complexity bounds, i.e. O(1/ ), for the number of calls to linear minimization oracle. We present promising experimental results showing the interest of the approach in comparison to competing methods.
منابع مشابه
Mirror Prox algorithm for multi-term composite minimization and semi-separable problems
In the paper, we develop a composite version of Mirror Prox algorithm for solving convexconcave saddle point problems and monotone variational inequalities of special structure, allowing to cover saddle point/variational analogies of what is usually called “composite minimization” (minimizing a sum of an easy-to-handle nonsmooth and a general-type smooth convex functions “as if” there were no n...
متن کاملMirror Prox Algorithm for Multi-Term Composite Minimization and Alternating Directions
In the paper, we develop a composite version of Mirror Prox algorithm for solving convex-concave saddle point problems and monotone variational inequalities of special structure, allowing to cover saddle point/variational analogies of what is usually called “composite minimization” (minimizing a sum of an easy-to-handle nonsmooth and a general-type smooth convex functions “as if” there were no ...
متن کاملStochastic Optimization with Importance Sampling for Regularized Loss Minimization
Uniform sampling of training data has been commonly used in traditional stochastic optimization algorithms such as Proximal Stochastic Mirror Descent (prox-SMD) and Proximal Stochastic Dual Coordinate Ascent (prox-SDCA). Although uniform sampling can guarantee that the sampled stochastic quantity is an unbiased estimate of the corresponding true quantity, the resulting estimator may have a rath...
متن کاملNonsmooth Steepest Descent Method by Proximal Subdifferentials in Hilbert Spaces
In this paper, we first study a nonsmooth steepest descent method for nonsmooth functions defined on a Hilbert space and establish the corresponding algorithm by proximal subgradients. Then, we use this algorithm to find stationary points for those functions satisfying prox-regularity and Lipschitz continuity. As an application, the established algorithm is used to search for the minimizer of a...
متن کاملProximally Guided Stochastic Subgradient Method for Nonsmooth, Nonconvex Problems
In this paper, we introduce a stochastic projected subgradient method for weakly convex (i.e., uniformly prox-regular) nonsmooth, nonconvex functions—a wide class of functions which includes the additive and convex composite classes. At a high-level, the method is an inexact proximal point iteration in which the strongly convex proximal subproblems are quickly solved with a specialized stochast...
متن کامل